Squeeze involvement in the specification of Drosophila leucokinergic neurons: Different regulatory mechanisms endow the same neuropeptide selection
نویسندگان
چکیده
One of the most widely studied phenomena in the establishment of neuronal identity is the determination of neurosecretory phenotype, in which cell-type-specific combinatorial codes direct distinct neurotransmitter or neuropeptide selection. However, neuronal types from divergent lineages may adopt the same neurosecretory phenotype, and it is unclear whether different classes of neurons use different or similar components to regulate shared features of neuronal identity. We have addressed this question by analyzing how differentiation of the Drosophila larval leucokinergic system, which is comprised of only four types of neurons, is regulated by factors known to affect expression of the FMRFamide neuropeptide. We show that all leucokinergic cells express the transcription factor Squeeze (Sqz). However, based on the effect on LK expression of loss- and gain-of-function mutations, we can describe three types of Lk regulation. In the brain LHLK cells, both Sqz and Apterous (Ap) are required for LK expression, but surprisingly, high levels of either Sqz or Ap alone are sufficient to restore LK expression in these neurons. In the suboesophageal SELK cells, Sqz, but not Ap, is required for LK expression. In the abdominal ABLK neurons, inhibition of retrograde axonal transport reduces LK expression, and although sqz is dispensable for LK expression in these cells, it can induce ectopic leucokinergic ABLK-like cells when over-expressed. Thus, Sqz appears to be a regulatory factor for neuropeptidergic identity common to all leucokinergic cells, whose function in different cell types is regulated by cell-specific factors.
منابع مشابه
Specification of Neuropeptide Cell Identity by the Integration of Retrograde BMP Signaling and a Combinatorial Transcription Factor Code
Individual neurons express only one or a few of the many identified neurotransmitters and neuropeptides, but the molecular mechanisms controlling their selection are poorly understood. In the Drosophila ventral nerve cord, the six Tv neurons express the neuropeptide gene FMRFamide. Each Tv neuron resides within a neuronal cell group specified by the LIM-homeodomain gene apterous. We find that t...
متن کاملThe involvement of kisspeptin in centrally regulatory mechanism of neuropeptide Y on testosterone secretion in male Wistar rats
Introduction: Numerous studies have demonstrated that kisspeptin, a peptide from the KISS1 gene, plays an important role in regulating the secretion of gonadotropin releasing hormone (GnRH). Also, there is some evidence suggesting that kisspeptin can interact with other neuropeptides for the control of the reproductive axis. In the present study, we have investigated the effect of central admin...
متن کاملA targeted genetic screen identifies crucial players in the specification of the Drosophila abdominal Capaergic neurons
The central nervous system contains a wide variety of neuronal subclasses generated by neural progenitors. The achievement of a unique neural fate is the consequence of a sequence of early and increasingly restricted regulatory events, which culminates in the expression of a specific genetic combinatorial code that confers individual characteristics to the differentiated cell. How the earlier r...
متن کاملThe effect of intracerebroventricular administration of neuropeptide Y on reproductive axis function in the male Wistar rats: Involvement of hypothalamic KiSS1/GPR54 system
Several studies have shown that neuropeptide Y (NPY) is considered to be one of the key regulators of the hypothalamic-pituitary-gonadal axis in the mammals. Also, kisspeptin is a powerful upstream regulator of gonadotropin-releasing hormone neurons in the hypothalamus. The present study aims to investigate the effects of the intracerebroventricular (ICV) injection of NPY and BIBP3226 (NPY rece...
متن کاملC-terminal fragments of APP: Its neurotoxic mechanisms and involvement in gene transcription
Several lines of evidence suggest that some neurotoxicity in AD is due to proteolytic fragments of APP. In this study, we compared the potency of neurotoxicity induced by CT with that of A-beta neurotoxicity and our results showed that various CT peptide fragments (CTFs; CTF99, AICD, CTF31) caused neurotoxicity in cultured cells and primary cortical neurons, induced strong non-selective inward ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Mechanisms of Development
دوره 124 شماره
صفحات -
تاریخ انتشار 2007